Using Hyper-genre Training to Explore Genre Information for Automatic Chord Estimation

نویسندگان

  • Yizhao Ni
  • Matt McVicar
  • Raúl Santos-Rodriguez
  • Tijl De Bie
چکیده

Recently a large amount of new chord annotations have been made available. This raises hopes for further development in automatic chord estimation. While more data seems to imply better performance, a major challenge however, is the wide variety of genres covered by these new data. As a result, the genre-independent training scheme as is common today is bound to fail. In this paper we investigate various options for exploring genre information for chord estimation, while also maximally exploiting the full dataset. More specifically, we propose a hyper-genre training scheme in which each genre cluster has its own parameters, tied together by hyper parameters as a Bayesian prior. The results are promising, showing significant improvements over other prevailing training schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models

We describe a system for automatic chord transcription from the raw audio using genre-specific hidden Markov models trained on audio-from-symbolic data. In order to avoid enormous amount of human labor required to manually annotate the chord labels for ground-truth, we use symbolic data such as MIDI files to automate the labeling process. In parallel, we synthesize the same symbolic files to pr...

متن کامل

A Study on Music Genre Recognition and Classification Techniques

Automatic classification of music genre is widely studied topic in music information retrieval (MIR) as it is an efficient method to structure and organize the large numbers of music files available on the Internet. Generally, the genre classification process of music has two main steps: feature extraction and classification. The first step obtains audio signal information, while the second one...

متن کامل

Genre classification of music by tonal harmony

We present a genre classification framework for audio music based on a symbolic classification system. Audio signals are transformed to a symbolic representation of harmony using a chord transcription algorithm, by computing Harmonic Pitch Class Profiles. Then, language models built from a groundtruth of chord progressions for each genre are used to perform classification. We show that chord pr...

متن کامل

Genre Classification Using Harmony Rules Induced from Automatic Chord Transcriptions

We present an automatic genre classification technique making use of frequent chord sequences that can be applied on symbolic as well as audio data. We adopt a first-order logic representation of harmony and musical genres: pieces of music are represented as lists of chords and musical genres are seen as context-free definite clause grammars using subsequences of these chord lists. To induce th...

متن کامل

Musical genre classification of audio signals

Musical genres are categorical labels created by humans to characterize pieces of music. A musical genre is characterized by the common characteristics shared by its members. These characteristics typically are related to the instrumentation, rhythmic structure, and harmonic content of the music. Genre hierarchies are commonly used to structure the large collections of music available on the We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012